首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369144篇
  免费   40416篇
  国内免费   17998篇
电工技术   22305篇
技术理论   16篇
综合类   31784篇
化学工业   59508篇
金属工艺   22248篇
机械仪表   24022篇
建筑科学   32586篇
矿业工程   13256篇
能源动力   11495篇
轻工业   39532篇
水利工程   11421篇
石油天然气   16434篇
武器工业   4191篇
无线电   26335篇
一般工业技术   42693篇
冶金工业   15590篇
原子能技术   3909篇
自动化技术   50233篇
  2024年   866篇
  2023年   5541篇
  2022年   9920篇
  2021年   13774篇
  2020年   12274篇
  2019年   10485篇
  2018年   10666篇
  2017年   12984篇
  2016年   15613篇
  2015年   16907篇
  2014年   24032篇
  2013年   24511篇
  2012年   26594篇
  2011年   28811篇
  2010年   20776篇
  2009年   21378篇
  2008年   19819篇
  2007年   24222篇
  2006年   22063篇
  2005年   18537篇
  2004年   15401篇
  2003年   13353篇
  2002年   10447篇
  2001年   8036篇
  2000年   6741篇
  1999年   5404篇
  1998年   4449篇
  1997年   3789篇
  1996年   3256篇
  1995年   2806篇
  1994年   2454篇
  1993年   1862篇
  1992年   1647篇
  1991年   1265篇
  1990年   1172篇
  1989年   1053篇
  1988年   689篇
  1987年   481篇
  1986年   418篇
  1985年   435篇
  1984年   452篇
  1983年   394篇
  1982年   349篇
  1981年   178篇
  1980年   201篇
  1979年   120篇
  1978年   88篇
  1977年   86篇
  1962年   77篇
  1959年   67篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
61.
Deoxyribonucleic acid (DNA) replication can be divided into three major steps: initiation, elongation and termination. Each time a human cell divides, these steps must be reiteratively carried out. Disruption of DNA replication can lead to genomic instability, with the accumulation of point mutations or larger chromosomal anomalies such as rearrangements. While cancer is the most common class of disease associated with genomic instability, several congenital diseases with dysfunctional DNA replication give rise to similar DNA alterations. In this review, we discuss all congenital diseases that arise from pathogenic variants in essential replication genes across the spectrum of aberrant replisome assembly, origin activation and DNA synthesis. For each of these conditions, we describe their clinical phenotypes as well as molecular studies aimed at determining the functional mechanisms of disease, including the assessment of genomic stability. By comparing and contrasting these diseases, we hope to illuminate how the disruption of DNA replication at distinct steps affects human health in a surprisingly cell-type-specific manner.  相似文献   
62.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
63.
The thermal degradation of unstabilized polypropylene has been investigated under long-term processing (twin extruder) and thermal aging at 150°C, with additive concentration studies on combinations of an established hindered phenolic antioxidant (pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate) [S1010] and two popular thioesters (distearyl-3,3′-thiodipropionate [DSTDP] and didodecyl-3,3′-thiodipropionate [DLTDP]) using melt flow rate, carbonyl index and powder diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (FTIR), and differential scanning calorimetry (DSC) (oxidation induction time [OIT]) and ultimate embrittlement time (Fracture) on injection-molded test pieces. It was found that 20:80 phenol:thioester ratios provided the best long-term thermal stability (LTTS); however, this was the reverse for processing stabilization (80:20), underlining the antioxidant nature of the two stabilizers (long term vs. melt). Melt preblending of the stabilizers (to form a no-dust blend) gave rise to improved LTTS. DRIFTS FTIR indicated that there was an improvement in preblending the additives, which removed any volatile impurities. Increased additive dispersion and localized potential efficacy in the stabilization cycle is important, as well as possible improved addition of the additives to the extruder rather than fine powder. The data are discussed in relation to the long-term stabilization of polypropylene in high-temperature applications such as under the bonnet of automobiles where minimizing stabilizer losses and maximizing synergy are important.  相似文献   
64.
Based on the experimental reports, Au-decoration on the ZnO nanostructures dramatically increases the electronic sensitivity to H2S gas. In the current study, we computationally scrutinized the mechanism of Au-decoration on a ZnO nanotube (ZON) and the influence on its sensing behavior toward H2S gas. The intrinsic ZON weakly interacted with the H2S gas with an adsorption energy of ?11.2 kcal/mol. The interaction showed no effect on the HOMO–LUMO gap and conductivity of ZON. The predicted response of intrinsic ZON toward H2S gas is 6.3, which increases to 78.1 by the Au-decoration at 298 K. The corresponding experimental values are about 5.0 and 80.0, indicating excellent agreement with our findings. We showed that the Au atom catalyzes the reaction 3O2?+?2H2S?→?2SO2?+?2H2O. Our calculated energy barrier (at 298 K) is about 12.3 kcal/mol for this reaction. The gap and electrical conductance Au-ZON largely changed by this reaction are attributed to the electron donation and back-donation processes. The obtained recovery time is about 1.35 ms for desorption of generated gases from the surface of the Au-ZON sensor.  相似文献   
65.
Calcium cobaltite Ca3Co4O9, abbreviated Co349, is a promising thermoelectric material for high-temperature applications in air. Its anisotropic properties can be assigned to polycrystalline parts by texturing. Tape casting and pressure-assisted sintering (PAS) are a possible future way for a cost-effective mass-production of thermoelectric generators. This study examines the influence of pressure and dwell time during PAS at 900°C of tape-cast Co349 on texture and thermoelectric properties. Tape casting aligns lentoid Co349. PAS results in a textured Co349 microstructure with the thermoelectrically favorable ab-direction perpendicular to the pressing direction. By pressure variation during sintering, the microstructure of Co349 can be tailored either toward a maximum figure of merit as required for energy harvesting or toward a maximum power factor as required for energy harvesting. Moderate pressure of 2.5 MPa results in 25% porosity and a textured microstructure with a figure of merit of 0.13 at 700°C, two times higher than the dry-pressed, pressureless-sintered reference. A pressure of 7.5 MPa leads to 94% density and a high power factor of 326 µW/mK2 at 800°C, which is 11 times higher than the dry-pressed reference (30 MPa) from the same powder.  相似文献   
66.
In this paper the microstructure and mechanical properties of two different Cf/ZrB2-SiC composites reinforced with continuous PyC coated PAN-derived fibres or uncoated pitch-derived fibres were compared.Pitch-derived carbon fibres showed a lower degree of reaction with the matrix phase during sintering compared to PyC/PAN-derived fibres. The reason lies in the different microstructure of the carbon. The presence of a coating for PAN-derived fibres was found to be essential to limit the reaction at the fibre/matrix interface during SPS. However, coated bundles were more difficult to infiltrate, resulting in a less homogeneous microstructure.As far as the mechanical properties are concerned, specimens reinforced with coated PAN-derived fibres provided higher strengths and damage tolerance than uncoated pitch-derived fibres, due to the higher degree of fibre pull-out. On the other hand, the weaker fibre/matrix interface resulted in lower interlaminar shear, off-axis strength and ablation resistance.  相似文献   
67.
Orthorhombic-structured CaIn2O4 ceramics with a space group Pca21 were synthesized via a solid-state reaction method. A high relative density (95.6 %) and excellent microwave dielectric properties (εr ~11.28, Qf = 74,200 GHz, τf ~ ?4.6 ppm/°C) were obtained when the ceramics were sintered at 1375 °C for 6 h. The dielectric properties were investigated on the basis of the Phillips–Van Vechten–Levine chemical bond theory. Results indicated that the dielectric properties were mainly determined by the InO bonds in the CaIn2O4 ceramics. These bonds contributed more (74.65 %) to the dielectric constant than the CaO bonds (25.35 %). Furthermore, the intrinsic dielectric properties of the CaIn2O4 ceramics were investigated via infrared reflectivity spectroscopy. The extrapolated microwave dielectric properties were εr ~10.12 and Qf = 112,200 GHz. Results indicated that ion polarization is the main contributor to the dielectric constant in microwave frequency ranges.  相似文献   
68.
69.
The impact of graphite nanoplatelets (GNPs) on the physical and mechanical properties of cementitious nanocomposites was investigated. A market-available premixed mortar was modified with 0.01% by weight of cement of commercial GNPs characterized by two distinctively different aspect ratios.The rheological behavior of the GNP-modified fresh admixtures was thoroughly evaluated. Hardened cementitious nanocomposites were investigated in terms of density, microstructure (Scanning Electron Microscopy, SEM and micro–Computed Tomography, μ-CT), mechanical properties (three-point bending and compression tests), and physical properties (electrochemical impedance spectroscopy, EIS and thermal conductivity measurements). At 28 days, all GNP-modified mortars showed about 12% increased density. Mortars reinforced with high aspect ratio GNPs exhibited the highest compressive and flexural strength: about 14% and 4% improvements compared to control sample, respectively. Conversely, low aspect ratio GNPs led to cementitious nanocomposites characterized by 36% decreased electrical resistivity combined with 60% increased thermal conductivity with respect to the control sample.  相似文献   
70.
Hydrophilic polymer networks (hydrogels) based on sodium carboxymethylcellulose (NaCMC) and polycarboxylic acids (oxalic, succinic, citric and adipic) as cross-linking agents are synthesized by esterification reaction; one series of NaCMC hydrogels cross-linked with citric acid is prepared with acrylamide and acrylic acid (Aam/Aac) copolymers using the design of semi-interpenetrating polymer networks (semi-IPN), in order to increase their potential application for flocculation purposes. The Infrared spectroscopy (FTIR) of hydrogels confirms the esterification reaction between NaCMC and cross-linking agents. Results of swelling measurements show that citric acid in the amount of 15 wt% gives the hydrogels with the best absorption capacity. The results of Differential scanning calorimetry (DSC) and Thermal gravimetric analysis (TGA) show no significant difference in thermal properties of neat and semi-interpenetrating NaCMC hydrogels. The amorphous nature of hydrogels is confirmed by X-ray diffraction analysis (XRD). The results of flocculation study show that combination of NaCMC network and Aam/Aac copolymer with initial mass ratio of 10/90 creates a theoretical platform for the production of flocculant which could show high efficacy in purifying of water dominated by positively charged particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号